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Abstract: Treatment of alkenyldicyclohexylborane 5 with 1-lithio-3,4-pentadien-1-ynes derived
from 10 followed by trimethyltin chloride and acetic acid furnished o-isotoluenes 13 in a single
operation. The reaction proceeded through an initial formation of diene-allenes 11, which

underwent facile electrocyclizations to produce 12 leading to o-isotoluenes 13.
Copyright © 1996 Elsevier Science Ltd

As an alicyclic isomer of toluene, S-methylene-1,3-cyclohexadiene (o-isotoluene, 1) possesses an
additional 24 kcal/mol in energy,! which is mainly responsible for its unusual chemical reactivity.
Dimerization of 1 via concerted ene reactions to the corresponding ene dimers 2 and 3 (75 % yield, 2:3 = 2:1)
occurs under mild thermal conditions.2 Unlike the usual ene reactions which require high reaction
temperatures,® the formation of an aromatic system during dimerization of 1 greatly facilitates the rate of
reaction. Treatment of 1 with tetracyanoethylene also produced the corresponding ene adduct* Similarly,
reaction with styrene at 80 °C furnished 1,2-diphenylpropane and 1,3-diphenylpropane in a 3:1 ratio in 90 %
total yield.*® The o-isotoluene 1 is also sensitive to acid and oxygen, being rapidly converted to toluene*® and
benzyl hydroperoxide,’ respectively.
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The high reactivities of 1 and its derivatives put severe constraints on possible synthetic methods for
these fascinating compounds. Thermolysis of suitable precursors, obtained by multistep syntheses,
immediately prior to the formation of o-isotoluenes has been employed to accomplish this difficult task.*S
Alternatively, facile electrocyclization of the transient (Z)-1,2,4,6-heptatetraene (diene-allene) has also been
shown to produce 1.7 We recently reported a simple and versatile route to (Z)-diene-allenes, thus providing a
practical synthesis of o-isotoluenes.”® We now report a new method for the synthesis of a variety of
(£)-diene-allenes, leading to the corresponding o-isotoluenes with diverse structures.

It was previously reported that treatment of alkenyldicyclohexylboranes S, readily prepared from
terminal alkynes 4 and dicyclohexylborane, with 1-lithio-1-alkynes 6 provided
1-alkynylalkenyldicyclohexylborates 7 (Scheme 1).* Exposure of 7 to tributyltin chloride promoted a
selective migration of the alkenyl group from the boron atom to the adjacent acetylenic carbon atom to
furnish 8, which on treatment with acetic acid was converted to dienes 9 with high geometric purity.

We envisioned that by using the readily available 3 4-pentadien-l-ynes 10° to produce
1-lithio-3,4-pentadien-1-ynes for the subsequent formation of the organoborate complexes, the reaction
sequence outlined in Scheme 1 could be easily adopted for the synthesis of (Z)-diene-allenes 11 as transient
intermediates toward o-isotoluenes 13 (Scheme 2). Indeed, this synthetic route was found to be successful for
the preparation of a variety of o-isotoluenes (Table 1). Unlike the parent compound 1 and o-isotoluenes
without an R group on the six-membered ring, o-isotoluenes 13 having an R group on the ring were stable to
oxygen and could be isolated and purified by column chromatography as observed previously.”
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The rates of electrocyclization of diene-allenes 11 to 12 were generally very facile,!® giving rise to

o-isotoluenes 13 after treatment of 12 with acetic acid. However with the presence of a sterically demanding
tert-butyl group as the R group, the rate of electrocyclization was significantly reduced, allowing isolation of
diene-allenes 14a (41%) and 14b (35%)!! after treatment with acetic acid. On heating in CDCl; at 60 °C for
96 h (t;, = ca. 12 h), 14b was smoothly converted to o-isotoluene 131 in 91% isolated yield.
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14b: R',R" = -(CH,)5-, 35% 131: R',R = -(CH,)5-, 91%

The conjugated allenynes 10 were synthesized according to the reported procedures.’ To 7.326 g (48.2
mmol) of the readily available 3-butyl-1,2-heptadiene'? in 150 mL of THF at -60 °C under an N, atmosphere
was added 19.3 mL of a 2.5 M solution of n-butyllithium in hexanes. After 1 h at -60 °C, 7.61 g (53.0 mmol)
of anhydrous CuBr in 60 mL of THF was introduced via cannula, and the mixture was allowed to warm to -20
°C. The mixture was then cooled to -40 °C, and 11.88 g (53 mmol) of 1-iodo-2-(trimethylsilyl)acetylene!®
was added dropwise over 1 h. After an additional 1 h at -40 °C, the mixture was allowed to warm to 0 °C and
then was poured into a saturated NH,4CI solution. Pentane (30 mL) was added and the mixture was filtered.
The organic layer was separated, and the aqueous layer was extracted with pentane (3 x 40 mL). The
combined organic layers were washed with water, dried over MgSQj,, and concentrated. The residue was
distilled (bp 75 °C, 0.2 Torr) to afford 8.658 g (73%) of 1-(trimethylsilyl)-5-butyl-3,4-nonadien-1-yne as a
colorless liquid.?* To 3.754 g (15.14 mmol) of 1-(trimethylsilyl)-5-butyl-3,4-nonadien-1-yne in 140 mL of
ethanol under a nitrogen atmosphere was added 36 mL of a 0.1 N aqueous NaOH solution. After 24 h at rt,
the mixture was poured into ice/water and was extracted with pentane. The organic layer was washed with a
saturated NH,CI solution, dried over MgSO,, and concentrated. The residue was distilled (bp 38 °C, 0.09
Torr) to furnish 2.383 g (90%) of 10a as a colorless liquid: IR (neat) 3314, 2105, 19585, 1466, 1379 cml; 'H
NMR (CDCly) § 5.30 (1 H, sextet, J = 2.8 Hz), 2.75 (1 H, d, / = 2.4 Hz), 1.99 (4 H, m), 1.37 (8 H, m), 0.90 (6
H, t); 1’C (CDCly) 8§ 210.47, 107.34, 78.32, 76.20, 74.98, 31.89, 29.44, 22.32, 13.85; MS (m/e) 161
(M*-CH3), 147, 134, 119, 105, 91, 77. Alernatively, 5-melhyl-]-(trimcthylsilyl)-3,4~hcxadicn-l-ym:ga was
synthesized in 93% isolated yield by sequentially treating a slurry of CuBr and triethylamine in DMF under
an N, atmosphere with (trimethylsilyl)acetylene and 1-bromo-3-methyl-1,2-butadiene!* at 0 °C followed by
10 h at 30 °C.%® Desilylation with NaOH/EtOH furnished 10b in 28% isolated yield. The low isolated yield
for 10b was due to its high volatility. Similarly, 5,5-(pentamethylene)-1-(trimethylsilyl)-3,4-pentadien-1-yne
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Table 1. Synthesis of o-Isotoluenes 13

o-isotoluenes, 13, isolated yield®"

Bu 13a, R = Bu, 60% CHy
“ gy 13b,R=n-CsH,;, 54% “cHy  13h,R=Pr,41%
R 13c, R = i-Pr, 38% R
13h
lSa-g 13d, R= Ph, 16% 13i. R = Pr, 43%
13e, R = 1-cyclohexenyl, 41% — 13j, R = Ph, 25%
13f, R = methoxymethyl, 20% A 13k, R = i-Pr, 38%
13g, R = cyclohexylmethyl, 30% 13i-1 131, R =-Bu, 32%°

2 The isolated products were characterized by IR, 'H (270 MHz) and 13C (67.9 MHz) NMR,!¢ and MS.

b In addition to o-isotoluenes 13, ca. 5% of the 1-cyclohexyl-1,3,4-pentatriene derivatives arising from
a competing migration of the cyclohexyl group were also isolated.

¢ The overall isolated yield from 10c.

was prepared from 1-bromo-3,3-(pentamethylene)-1,2-propadiene'® and (trimethylsilyl)acetylene in 85%
isolated yield. Desilylation with NaOH/EtOH furnished 10c¢ in 86% isolated yield.

The following procedure for the synthesis of o-isotoluene 13a is representative. To 1.5 mL of a 2.0 M
solution of BH3'SMe, (3.0 mmol) in 8 mL of THF under a nitrogen atmosphere was added 0.61 mL (0.492 g,
6.0 mmol) of cyclohexene at 0 °C. After 30 min, a white slurry of dicyclohexylborane appeared.!® The
mixture was kept at 0 °C for an additional 30 min before cooling to -15 °C. A solution of 0.246 g of 1-hexyne
(3.0 mmol) in 3 mL of THF was then introduced. After 2 h at 0 - 5 °C, the reaction mixture became
homogeneous and was used immediately to form the organoborate complex. To a second flask containing
0.528 g of 10a (3.0 mmol) in 3 mL of THF at -25 °C was added 1.2 mL of a 2.5 M solution of n-butyllithium
(3.0 mmol) in hexanes. After 15 min at -25 °C, the resulting 1-lithio-5-butyl-3,4-nonadien-1-yne was
introduced via cannula to the flask containing (E)-1-hexenyldicyclohexylborane at -25 °C. The reaction
mixture was stirred at rt for 1 h before cooling to 0 °C. A solution of trimethyltin chloride (3.0 mL, 1.0 M,
3.0 mmol) in THF was then introduced with a syringe. After an additional 1 h at rt, 2 mL of glacial acetic
acid was added and the mixture was heated to 50 °C for 1 h before cooling to rt. Methanol (5 mL), 6.3 mL of
a 6 N NaOH solution, and 1.74 mL of 30% H,0, were then introduced sequentially, and the reaction mixture
was heated to 50 °C for 1 h. The mixture was then extracted with pentane (3 x 10 mL), and the combined
organic layers were washed with water, dried over MgSQy, and concentrated. The residue was purified by
column chromatography (silica gel / hexanes) to furnish 0.465 g (60 %) of 13a as a light yellow liquid: IR
(neat) 1636, 1466, 1378, 735 cm’}; IH NMR (CDCl;) 3 6.34 (1 H,d, J = 9.9 Hz), 594 (1 H,dd, J=3 and 1
Hz), 5.93 (1 H, dd, 7 =3 and 1 Hz), 572 (1 H, dt, J = 9.9 and 3 Hz), 3.23 (1 H, m), 2.2 2 H, m), 2.07 (1 H,
m), 1.95 (1 H, m), 1.5 (1 H, m), 1.3 (13 H, m), 0.92 (9 H, m); }3C NMR (CDCl;) § 141.05, 132.82, 131.71,
124.76, 122.51, 121.09, 37.81, 37.46, 31.82, 31.66, 31.40, 30.90, 28.14, 23.22, 23.04, 23.01, 14.12, 14.09,
14.07; MS (m/e) 260 (M*), 203, 161, 147, 133, 119, 105, 91.
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